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Abstract The paper presents optimal parametric sensitivity control design for
estimation of parameters in bioreactors. We investigate the law of optimal parametric
sensitivity control for the model of a single species for microbial growth on a single
substrate. The nonlinear model is proposed and is shown to be structurally identifi-
able given its input. On the purpose of the estimation of the structural parameters the
maximum specific growth rate µmax and the half-saturation coefficient K , we find out
that an increase in the concentration of the system state results in the improvement of
the exactness and the reliability of the parametric estimation through the theoretical
analysis and numerical simulations.

Keywords Parametric sensitivity · Optimal control · Growth rate · Singular control ·
Bang–bang control

1 Introduction

Sensitivity analysis is used to determine how ‘sensitive’ a model is to the changes
in the values of the parameters of the model and to the variability in the structure of
the model. By showing how the model behavior responds to the changes in parame-
ter values, sensitivity analysis is a useful tool in model building as well as in model
evaluation. Sensitivity analysis helps to build confidence in the model by studying the
uncertainties that are often associated with parameters in models. Many parameters in
system dynamics models represent quantities that are very difficult, or even impossible
to measure to a great deal of accuracy in the real world. Also, some parameter values
change in the real world. Therefore, when building a system dynamics model, the
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modeler is usually at least somewhat uncertain about the parameter values he chooses
and must use estimates. Sensitivity analysis allows him to determine what level of
accuracy is necessary for a parameter to make the model sufficiently useful and valid.

Sensitivity tests help the modeler to understand dynamics of a system. Experi-
menting with a wide range of values can offer insights into the behavior of a system
in extreme situations. Discovering that the system behavior greatly changes in cor-
respondence of a change in a parameter value can identify a leverage point in the
model—a parameter whose specific value can significantly influence the behavior
mode of the system. Thus sensitivity analysis has been applied in many areas, such as
complex engineering systems, economics, physics, social sciences, medical decision-
making and so on. Although parametric sensitivity has been employed extensively in
many fields, its role in biological reactions is of recent origin. Cobelli and Thomaseth
[5] applied it to glucose utilization in the human body, and Geevan et al. [6] exam-
ined glucose-insulin feedback and β-cell kinetics in patients suffering from diabetes
mellitus.

In many control models, we can select certain control laws so that the parameters in
the models are optimally estimated. Observed data for parameter estimation is often
both difficult and expensive to obtain. Thus, when an experiment is conducted, the
input to the system should be such that the sensitivity to the parameter being esti-
mated is maximized. A natural question in the context of parameter estimation arises:
Given an experimental setup, how can the input sequence be chosen in such a way that
the parameters are optimally estimated? This is the well known problem of optimal
input design which is a classical problem in the identification literature [7]. Studies
on optimal input signal synthesis for parameter estimation in linear systems started
in the early 1970s [8]. Kalaba and Spingarn [9] presented an optimal solution for
the case of a first order, linear model with a quadratic criterion in the input u(t) and
the parametric sensitivities. Birk and Medvedev dealt with a sensitivity analysis of a
linear quadratic optimal multivariable controller for a fine coal injection vessel used
in the blast furnace process [11]. When the model is linear in parameters, the larger
the magnitude of the input, the greater will be the sensitivity. Then the input must be
constrained, as in [8,9,11]; otherwise the optimal input is infinite. Stigter and Kees-
man [12] showed how the problem for a fed-batch reactor can be solved by means
of singular control techniques. Ljung and Walter focused on the theory on the system
parameter estimation and presented practical use of available techniques [21,22].

The description of microbial growth is a basic component of any mathematical
model of a bioreactor. An accurate description would require many differential equa-
tions to express the rates of change of all intracellular and environmental variables.
Indeed, the corresponding model is too complex and most models attempt a judicious
simplification to retain key features of interest without irrelevant details. In this paper
the model is simplified and we assume that the growth on a single substrate follows
Monod kinetics [10] and the interaction between the growth rates is mutually inhibi-
tory. Although models of microbial growth have been studied for many years especially
in the field of stability [4,14], the application of the control theory in microbial growth
models is still a new research field.

In early studies on the estimation of bio-kinetic parameters practical identifications
have been done according to the experiments [15,16]. However, there are few topics

123



1156 J Math Chem (2010) 47:1154–1176

about the theoretical research on optimal input designs for parametric estimations
considered to be of importance to microbial growth. The emphasis in the paper is on
finding a control law that maximizes the parameter sensitivity for a specific parameter.
The major goal of our work is to apply the optimal control theory to the parameter
estimation of the nonlinear continuous microbial growth system. We will show that in
the case of constant microbial population, the optimal control law is obtained analyt-
ically and in the case of microbial population that is changing with time, the optimal
control law is not easy to obtain and we have to rely on numerical simulations.

The outline of the paper reads as follows. After the introduction, the problem state-
ment is presented in Sect. 2. Section 3 is devoted to a brief introduction on the maximum
principle with state constraints, which leads to a control strategy for the bioreactor in
Sect. 4. Final conclusions on applications in Sect. 5 and a list of references close the
work.

2 Problem statement

2.1 Concepts of parametric sensitivity

Consider a system of differential equations depending on a parameter α:

{
ẋ(t) = f (t, x;α),

x(0) = x0.
(1)

If the system is multi-parameter, the discussion is similar. For convenience, we
consider a single parameter system for discussion. The function f (t, x;α) is assumed
to be continuous and continuously differentiable in all its arguments, the state x is
continuously differentiable with respect to t and is differentiable with respect to the
parameter α. The sensitivity s(x;α) of x with respect to the parameter α is defined as:

s(x;α) = ∂x(t;α)

∂α
. (2)

The sign of sensitivity s(x;α) can be positive or negative. Moreover, we assume
time invariance of α so that interchange of differentiation with respect to α and time
is allowed, leading to:

d(∂x/∂α)

dt
= ∂ f

∂x

∂x

∂α
+ ∂ f

∂α
, (3)

that is,

ds(x;α)

dt
= ∂ f

∂x
s(x;α) + ∂ f

∂α
. (4)

In a general way, it is assumed that the initial state x0 is independent of the parameter
α, then s(x;α)|t=0 = 0.

123



J Math Chem (2010) 47:1154–1176 1157

2.2 Model

The cultivation with which we are dealing is a continuously stirred bioreactor. The
tank contains a liquid mixture: water, nutrients and biological cells. Feed substrates
or other nutrients are continuously introduced into the bioreactor.

We assume that the substrate is continuously fed into the bioreactor dynamically
with a substrate feed rate u(t) and the substrate concentration can be directly observ-
able. In this study the growth dynamics include Monod kinetics, so that the dynamical
model for the substrate dynamics reads:

{
ẋ(t) = −µmax

x(t)
K+x(t) X ′(t) + u(t),

Ẋ ′(t) = Yµmax
x(t)

K+x(t) X ′(t) − DX ′(t) .
(5)

whereµmax is the maximum specific growth rate, K the half-saturation coefficient, x(t)
denotes the substrate concentration which can be directly observable, X ′(t) denotes
the biomass concentration and Y is the yield rate constant, that is, the amount of the
cells by the transformation of unit amount of the substrate. D is the output rate of the
biomass.

Let X (t) = X ′(t)eDt , then the system becomes:

{
ẋ(t) = −µmax

x(t)
K+x(t) X (t)e−Dt + u(t),

Ẋ(t) = Yµmax
x(t)

K+x(t) X (t).
(6)

Generally, the output rate D of the biomass and the feed rate are of the same order
of magnitude so that there is constant liquid volume in the tank. We assume that the
order of magnitude of D is small enough so that the reaction between the biomass and
the substrate can proceed completely by decreasing the output rate of the biomass.
Thus, e−Dt decays very slowly with time so it can be approximately regarded as a
constant.

Let e−Dt ≈ 1, t ∈ [0, T ], then the model leads to:

{
ẋ(t) = −µmax

x(t)
K+x(t) X (t) + u(t),

Ẋ(t) = Yµmax
x(t)

K+x(t) X (t).
(7)

In this paper, we will consider the Eq. 7 for the continuously stirred tank reactor
(CSTR) model.

2.3 Structural identifiability

Before developing a good input for parameter estimation, it should be examined
whether the model is theoretically identifiable with the given input and output with
respect to the unknown parameters or not.

A mathematical model is identifiable if and only if there is a unique relationship
between each parameter value and the input–output behavior of the model, obtained by
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means of numerical data, measured during an experiment. Structurally identifiability
concept was first introduced by Bellman and Aström [17]. For linear systems, many
approaches were developed and necessary and sufficient conditions were determined
[18,19]. For nonlinear systems, there exist important results about the identifiability
of the systems [20].

Consider the following parametric nonlinear system described by:

{
ẋ(t) = f (x(t), u(t); θ),

y(t) = h(x(t), u(t); θ),
(8)

added by the initial conditions: x(t0) = x0, where x ∈ Rn, u ∈ Rm and y ∈ Rq are,
respectively, the state vector, the input vector and output vector. θ is a p-dimensional
parameter vector. Assume that the initial condition vector x0 is well specified.

Identifiability is a concept that is central in identification problems. The problem is
whether the identification procedure will yield a unique value of the parameter, and/or
whether the resulting model is equal to the true system. We thus have the following
definition:

Definition 1 A model structure M is a differentiable mapping from a connected, open
subset DM of R

n to a model set, such that the gradients of the predictor functions are
stable.

Definition 2 The structure M of system 8 is said to be globally identifiable at θ∗ with
respect to DM if there exists an input u at least such that y(θ∗, u) ≡ y(θ, u), θ ∈
DM ⇒ θ∗ = θ .

The question addressed in this section can be expressed as follows: Assuming that
Y is known, that the input u can be manipulated experimentally, can the parameters
µmax, K have unique values, given the parametric model 7 available experimental
data of substrate concentrations and initial conditions on concentrations? This can be
proved using the approach: Transformation of the nonlinear model on a linear model
in the parameters.

This can be proved transforming the nonlinear model in a linear model in the
parameters. In fact, it is matter of simple algebra to rewrite system 7 in the form:

{
K (ẋ − u) + µmaxx X = (u − ẋ)x,

K Ẋ − µmaxY x X = −x Ẋ .
(9)

which is linear in µmax and K , i.e., the parameters to identify. It is proved that the
model 7 is structurally identifiable.

2.4 Optimal parametric sensitivity input

In this study the growth dynamics include Monod kinetics and the dynamical model
for the substrate dynamics reads:

ẋ(t) = −µmax
x(t)

K + x(t)
X (t) + u(t), (10)
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We assume that x(0), X (0) > 0 are independent of µmax and K ,and parameters

µmax and K are independent of each other. Let y(t) = ∂x(t)
∂K , z(t) = ∂x(t)

∂µmax
, thus

y(0) = 0, z(0) = 0.
In the following sections, we will consider two cases:

• Biomass concentration X (t) is regarded as constant X ;
Then the parameters K and µmax satisfy the sensitivity equations:

ẏ(t) = µmax
(x(t) − K y(t))

(K + x(t))2 X, (11)

ż(t) = −µmax
K z(t)

(K + x(t))2 X − x(t)

K + x(t)
X. (12)

• Biomass concentration depends on time t .
The corresponding parameters K and µmax satisfy the sensitivity equations:

ẏ(t) = µmax
(x(t) − K y(t))

(K + x(t))2 X (t)+ Yµ2
max

x(t)

K + x(t)

t∫
0

(x(s) − K y(s))

(K + x(s))2 ds X (t) (13)

ż(t) = − x(t)(K + x(t)) + Kµmaxz(t)

(K + x(t))2 X (t)

−Yµmax
x(t)

K + x(t)

t∫
0

x(s)(K + x(s)) + Kµmaxz(s)

(K + x(s))2 ds X (t) (14)

In order to estimate system parameters, such that the system can optimally excite
the parametric sensitivities, we define the cost functional:

J =
T∫

0

[py2(t) + qz2(t)]dt, (15)

where p, q ∈ (0, 1] represent the contribution of the parameters to the systematic
sensitivities, respectively; T is the fixed terminal time which stands for the end of the
chemical experiment. The terminal time is not free in the paper, allowing us to be able
to find the optimal feed rate at any expected terminal time. If the terminal time is free,
the optimal control problem will become different: we will not only find the optimal
feed rate but also find the optimal terminal time.

Some constraints must be considered. Cell concentration must be nonnegative and
the input u is bounded. Let a<0<b and maximize the functional J (·) in the input region

U ≡ {u(·): [0, T ] → [a, b] | x(t) ≥ 0, u(·) is measurable}.

That is, find a u∗(·) ∈ U , such that

J (u∗(·)) = max
u(·)∈U

J (u(·)). (16)

We need to solve the optimal control problem with the state constraints in practice.
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3 Maximum principle with state constraints

Here we consider a more general problem than 1 [1]:

{
ẋ(t) = f (t, x(t), u(t)),
x(0) = x0.

(17)

The cost functional is

J (u(·)) =
T∫

0

F(t, x(t), u(t))dt + S(T, x(T )), (18)

subjected to the following state constraints

g(t, x(t), u(t)) ≥ 0, h(t, x(t)) ≥ 0. (19)

a(T, x(T )) ≥ 0, b(T, x(T )) = 0. (20)

where F is the cost function, depending on the state and the control and S is the cost
assigned to the terminal state. Assume that F : R × R

n × R
m → R, S: R × R

n → R,
f : R×R

n ×R
m → R

n , g: R×R
n ×R

m → R
s , h: R×R

n → R
q , a: R×R

n → R
l ,

b: R×R
n → R

l ′ are continuously differentiable with respect to all their arguments. In
addition, h is higher order differentiable as required.We are looking for a measurable
control u: [0, T ] → R

m and a corresponding state trajectory x(·): [0, T ] → R
n that is

an absolutely continuous function, such that the constraints 17,19–20 are satisfied and
the objective functional 18 takes its maximum value. For simplicity in exposition, we
call {x(·), u(·)} a feasible pair if x(·) is the state trajectory corresponding to u(·) and
conditions 19–20 are satisfied. A feasible pair that globally maximizes 18 is called an
optimal pair.

The Hamiltonian H and Lagrangian L are defined as follows :

H(t, x, u, λ) = F(t, x, u) + 〈λ, f (t, x, u)〉, (21)

L(t, x, u, λ, µ, ν) = H(t, x, u, λ) + 〈µ, g(t, x, u)〉 + 〈ν, h(t, x)〉. (22)

where λ ∈ R
n, µ ∈ R

s, ν ∈ R
q and 〈·, ·〉 are scalar products between vectors. Define

the control region:

�(t, x) = {u ∈ R
m : g(t, x, u) ≥ 0} (23)

and the full rank condition:

rank[∂g/∂u, diag(g)] = s (24)

Remark 1 In order to distinguish between the mixed constraints g ≥ 0 and the pure
state constraints h ≥ 0, we assume that each component of the function g depends
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explicitly on the control u. More precisely, we impose the full rank condition. The
constraint qualification 24 means that the gradients with respect to u of all the active
constraints g ≥ 0 must be linearly independent.

Before stating a formulation of the maximum principle, for convenience in writ-
ing, we introduce the following abbreviation. For a certain solution {x∗(t), u∗(t)}, let
F∗[t] = F(t, x∗(t), u∗(t)), and likewise for f, g and any of the other functions.

Theorem 1 [1] Let {x∗(·), u∗(·)} be an optimal pair of the above-mentioned prob-
lem in the fixed period of time [0, T ], such that u∗(·) is right-continuous with left-
hand limits and the full rank condition holds for every triple {t, x∗(t), u} t ∈ [0, T ]
with u ∈ �(t, x∗(t)). Assume that x∗(·) has finite discontinuities. Then there exist
a piecewise absolutely continuous costate trajectory λ(·) and piecewise continu-
ous multiplier functions µ(·),ν(·), a vector η(τi ) ∈ R

q for each point τi of dis-
continuity of λ(·) and α ∈ R

l , β ∈ R
l ′ , γ ∈ R

q , such that for every t , we have
(λ(t), µ(t), ν(t), α, β, γ, η(τi )) �= 0 and the following conditions hold almost every-
where:

u∗(t) = arg max
u∈�(t,x∗(t))

H(t, x∗(t), u, λ(t)), (25)

L∗
u[t] = H∗

u [t] + µg∗
u [t] = 0, (26)

λ̇(t) = −L∗
x [t], (27)

µ(t) ≥ 0, µ(t)g∗[t] = 0, (28)

ν(t) ≥ 0, ν(t)h∗[t] = 0, (29)

d H∗[t]
dt

= d L∗[t]
dt

= ∂L∗[t]
∂t

. (30)

At the terminal time, the following transversality conditions hold:

λ(T −) = S∗
x [T ] + αa∗

x [T ] + βb∗
x [T ] + γ h∗

x [T ], (31)

α ≥ 0, γ ≥ 0, αa∗[T ] = γ h∗[T ] = 0. (32)

At each point of discontinuity τ , it holds:

λ(τ−) = λ(τ+) + η(τ)h∗
x [τ ], (33)

H∗[τ−] = H∗[τ+] − η(τ)h∗
t [τ ], (34)

η(τ) ≥ 0, η(τ )h∗[τ ] = 0. (35)

The maximum principle with state constraints has been introduced. Two questions
of the problem arise:

1. Existence. Do the optimal inputs of the problem in the two cases exist?
2. Analytical solution. If the answer to the first question is positive, then can we find

the analytical solutions of the problem in the two cases?

In the next section, Problems 1 and 2 will be solved for both cases.
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4 Problem solution

As far as existence is concerned, due to the compactness of the control region, the set
of the state trajectories is compact. Thus we can prove the existence of the optimal
control of this problem in terms of the Filippov–Cesari theorem [13].

The control of the reactor is solved by the following steps, already mentioned in
Sect. 3.

4.1 Case of constant cell concentration

In this situation, the system consists of one equation describing the model and two
sensitivity equations, then it reads:

⎧⎪⎨
⎪⎩

ẋ(t) = −µmax
x(t)

K+x(t) X + u(t),

ẏ(t) = µmax
(x(t)−K y(t))
(K+x(t))2 X,

ż(t) = −µmax
K z(t)

(K+x(t))2 X − x(t)
K+x(t) X.

(36)

Here g =
(

u − a
b − u

)
, h = x , so the corresponding Hamiltonian and Lagrangian

functions are:

H(t, x, y, z, u, λ1, λ2, λ3) = λ1

(
−µmax

x

K + x
X + u

)
+ λ2µmax

(x − K y)

(K + x)2 X

+λ3

(
−µmax

K z

(K + x)2 − x

K + x

)
X + py2 + qz2,

(37)

L(t, x, u, λ, µ, ν) = H(t, x, y, z, u, λ1, λ2, λ3) + µ1(u − a) + µ2(b − u) + νx,

(38)

where

ν =
{≥0, x∗ = 0

0, x∗ > 0
, µ1, µ2 ≥ 0, µ1(u

∗ − a) = µ2(b − u∗) = 0.

λ̇1(t) = −L∗
x [t] = λ1µmax

K

(K + x∗)2 X − λ2µmax
(K − x∗ + 2K y∗)

(K + x∗)3 X

−λ3

(
µmax

2K z∗

(K + x∗)3 − K

(K + x∗)2

)
X − ν , (39)

λ̇2(t) = −L∗
y[t] = −2py∗ + λ2µmax

K

(K + x∗)2 X, (40)

λ̇3(t) = −L∗
z [t] = −2qz∗ + λ3µmax

K

(K + x∗)2 X, (41)
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L∗
u[t] = H∗

u [t] + µg∗
u [t] = λ1 + µ1 − µ2 = 0. (42)

At each point of discontinuity τ , it holds:

λ1(τ
−) = λ1(τ

+) + η(τ), (43)

H∗[τ−] = H∗[τ+] − η(τ)x∗
t (τ ), (44)

λ2(τ
−) = λ2(τ

+), λ3(τ
−) = λ3(τ

+). (45)

Since the system, the cost functional, g and h do not explicitly depend on t , then
H must be constant for an optimal solution, namely

H∗ = const, t ∈ [0, T ]. (46)

We have

u∗(t) =
⎧⎨
⎩

b, if λ1 > 0
undetermined, if λ1 = 0
a, if λ1 < 0

(47)

By Eq. 47, the solution of u∗(t) lies on the determination of the λ1 sign. In optimal
control, problems of singular control are problems that are difficult to solve because a
straightforward application of Pontryagin’s maximum principle fails to yield a com-
plete solution. The most common difficulty in applying Pontryagin’s principle arises
when the Hamiltonian depends linearly on the control u (See Eq. 37) and the control is
restricted to being between an upper and a lower bound: a ≤ u(t) ≤ b. To maximize
H(u), we need to make u as big or as small as possible, depending on the sign of λ1,
specifically:

If λ1 is positive at some times, negative at others and is only zero instantaneously,
then the solution is straightforward and is a bang–bang control that switches from a
to b at times when λ1 switches from negative to positive.

The case when λ1 remains at zero for a finite length of time [t1, t2] is called the sin-
gular control case. Between t1 and t2 the maximization of the Hamiltonian with respect
to u gives us no useful information and the solution in that time interval is going to have
to be found from other considerations. One approach would be to repeatedly differ-
entiate ∂ H/∂u with respect to time until the control u again explicitly appears, which
is guaranteed to happen eventually. One can then set that expression to zero and solve
for u. This amounts to saying that between t1 and t2 the control u is determined by the
requirement that the singularity condition continues to hold. The resulting so-called
singular arc will be optimal if it satisfies the condition 83.

We assume that x(0) > 0 is independent of the parameters µmax and K . We have
y(0) = z(0) = 0 by the definitions of y, z. ∀t ∈ [0, T ], the expressions of y(t) and
z(t) can be written as:

y(t) = µmax X

t∫
0

exp

⎛
⎝−

t∫
s

Kµmax X

(K + x(l))2 dl

⎞
⎠ x(s)

(K + x(s))2 ds (48)
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z(t) = −X

t∫
0

exp

⎛
⎝−

t∫
s

Kµmax X

(K + x(l))2 dl

⎞
⎠ x(s)

K + x(s)
ds (49)

Theorem 2 If the cell population X is constant and q K 2 − pµ2
max ≥ 0, then the

optimal pair {x∗(·), u∗(·)} of the problem defined by Eq. 36 is such that x∗(t) >

0, u∗(t) = b a.e. t ∈ [0, T ].
Proof Case 1 x∗(t) = 0, a.e. t ∈ [0, T ]

It is obtained that y∗(t) = z∗(t) = 0, a.e. t ∈ [0, T ] by the definitions of y and z,
u∗(t) = 0, a.e. t ∈ [0, T ] by Eq. 36 and µ1(t) = µ2(t) = 0 under the Maximum Prin-
ciple condition 38. Using 42, we have λ1(t) = 0, a.e. t ∈ [0, T ] and the corresponding
Hamiltonian H∗ is 0.

However x∗(0) > 0, and then the control u∗ is an impulse control at the initial time
point which is a generalized solution, not a classical solution that we desire. So it does
not meet the requirement in this case.

Case 2 x∗(t) > 0, a.e. t ∈ [0, T ]
Now, ν(t) = 0, y∗(t) > 0, z∗(t) < 0 a.e. t ∈ [0, T ]. Under the terminal condition,

it holds λ1(T −) = γ , λ2(T −) = λ3(T −) = 0, where γ ≥ 0, γ x∗(T −) = 0, and
x∗(T −) > 0, then γ = 0. Using Eqs. 39–41, we can get:

λ1(t) = X

T∫
t

exp

⎛
⎝

t∫
s

Kµmax X

(K + x∗(l))2 dl

⎞
⎠ �(s)

(K + x∗(s))3 ds, (50)

where �(s) = [−µmaxλ2(s) − Kλ3(s)]x∗(s) + λ2(s)µmax(K + 2K y∗(s)) + λ3(s)
(2Kµmaxz∗(s) − K 2).

λ2(t) = 2p

T∫
t

exp

⎛
⎝

t∫
s

Kµmax X

(K + x∗(l))2 dl

⎞
⎠ y∗(s)ds, (51)

λ3(t) = 2q

T∫
t

exp

⎛
⎝

t∫
s

Kµmax X

(K + x∗(l))2 dl

⎞
⎠ z∗(s)ds. (52)

Then Eqs. 51 and 52 lead to λ2(t) > 0, λ3(t) < 0 a.e. t ∈ [0, T ].
We assume that q K 2 − pµ2

max ≥ 0, which is a natural assumption. In practice,
K � µmax (For example K = 1, µmax = 4.09×10−4 [2]) and p, q are over the same
order of magnitude, so the assumption is reasonable.

Substitute Eqs. 48 and 49 into Eqs. 51 and 52, respectively, and yield:

λ2(t) = 2p

T∫
t

s∫
0

exp

⎛
⎝

⎛
⎝

t∫
s

−
s∫

l

⎞
⎠ Kµmax X

(K + x∗(r))2 dr

⎞
⎠ µmax X x∗(l)

(K + x∗(l))2 dlds, (53)
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λ3(t) = −2q

T∫
t

s∫
0

exp

⎛
⎝

⎛
⎝

t∫
s

−
s∫

l

⎞
⎠ Kµmax X

(K + x∗(r))2 dr

⎞
⎠ X x∗(l)

K + x∗(l)
dlds, (54)

Using Eqs. 53 and 54 and the assumption condition q K 2 − pµ2
max ≥ 0, thus,

�(s) > 0, a.e. s ∈ [0, t], then λ1(t) > 0, a.e. t ∈ [0, T ], hence, u∗(t) = b, a.e. t ∈
[0, T ].
Case 3 x∗(t) ≥ 0, t ∈ [0, T ]

Let t1 > 0, t1 < t2 ≤ T , and suppose that there exists at least one interval [t1, t2] ⊂
[0, T ], such that x∗(t) = 0, a.e. t ∈ [t1, t2]. By case 1, Hamiltonian is 0, then we have

py∗2
(T −) + qz∗2

(T −) + λ1(T
−)(−µmax

x∗

K + x∗ X + u∗)

+λ2(T
−)µmax

(x∗ − K y∗)
(K + x∗)2 X + λ3(T

−)

(
−µmax

K z∗

(K + x∗)2 − x∗

K + x∗

)
X

= py∗2
(T −) + qz∗2

(T −) = 0. (55)

We infer that y∗(T −) = z∗(T −) = 0 which is in contradiction with y∗(T −) >

0, z∗(T −) < 0. Hence, case 3 is impossible. ��
Remark 2 x∗(T −) ≥ 0, it holds λ1(T −)

(
−µmax

x
K+x X + u

)
= 0. If x∗(T −) > 0, in

terms of the terminal condition then λ1(T −) = 0; If x∗(T −) = 0, then u∗(T −) = 0.

In addition, we consider the factor of the substrate output into the model, the sub-
strate model reads:

ẋ(t) = −µmax
x(t)

K + x(t)
X − Dx(t) + u(t) (56)

where the constant D > 0 is the output rate of the substrate.

Corollary 1 The cost functional and the control region are the same as the above-
mentioned discussion. On the hypothesis of q K 2 ≥ pµ2

max, there exists an optimal
pair {x∗(·), u∗(·)} satisfying x∗(t) > 0, u∗(t) = b a.e. t ∈ [0, T ].

4.1.1 Numerical results and discussion

In order to demonstrate the advantages of utilizing the optimal input, the parameter
estimation accuracy is compared with and without the optimal input in the presence
of observation noise. The analytical solution for the optimal input is first evaluated for

K = 1, µmax = 0.005, x(0) = 2, X = 1000, T = 200, b = 4

For the non-optimal input, a sine wave with angular frequency ω = 0.01 rad/ min
is utilized. Then for the same power input as for the optimal input we have u′(t) =
b sin ωt .
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Fig. 1 Comparison of optimal and non-optimal inputs for K = 1mg/l, µmax = 0.005, x(0) = 2mg/L,
X = 1000mg/L, T = 200 min, b = 4mg/(L min). The optimal input: u(t) = b and the non-optimal input:
u(t) = b sin ωt (ω = 0.01 rad/ min). a Sensitivity xK (t, K ) versus time. b Sensitivity xµmax (t, µmax)

versus time

Figure 1 a,b show the optimal and non-optimal sensitivities about parameters
K , µmax as a function of time, corresponding to the inputs given in the above par-
agraph. It is seen that the absolute value of the sensitivity for the optimal input is
higher than that for the non-optimal input.

The parameter estimation problem is solved via the method of quasi-linearization.
First it is assumed that the true value of the parameters K , µmax are equal to 1 and
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Table 1 Estimates of the Parameter µmax for a typical run

Cycle number Estimate of µmax

Optimal input Non-optimal input

0 0.001 0.001

.

.

.
.
.
.

.

.

.

8 0.0050003 0.0049985

9 0.0050003 0.0049985

Percent error (cycle 9) 0.006% 0.03%

Average estimate (10 runs) 0.0044 0.0042

Standard deviation (10 runs) 0.0012 0.0013

K = 1mg/L, x(0) = 2mg/L, X = 1000mg/L, T = 200 min, b = 4mg/(L min). The optimal input: u(t) = b
and the non-optimal input: u(t) = b sin ωt (ω = 0.01 rad/ min). The first approximation of the parameter
µmax is assumed to be µmax = 0.001. 1000 additional observations are made at 0.2 min intervals. (True
value of µmax = 0.005)

0.005, respectively. The system has two unknown parameters. For simplicity, we fix
one of the two parameters and estimate the other. Then for the conditions given, the
optimal input is the maximal allowed input. The observations are formed by adding
noise to the optimal input response, x(t)

mi = x(ti ) + v(ti ), (57)

where mi is the observation at time ti , x(ti ) is the state variable, and v(ti ) is the white
Gaussian noise with zero mean and variance equal to 0.1. Starting with the initial
condition, which is assumed to be known exactly at time t = 0, we made one thou-
sand additional observations. The first approximations of the parameters K , µmax are
assumed to be 0.5 and 0.001, respectively.

The procedure is repeated for the non-optimal input given in the above paragraph.
The observations are formed according to Eq. 57 by adding noise to the non-opti-
mal input response. As previously, one thousand observations are made, and the first
approximations of the parameters K , µmax are assumed to be 0.5 and 0.001, respec-
tively.

Tables 1 and 2 show parameter estimates for a typical run in presence of both the
optimal and non-optimal inputs. Note that the additive noise is identical for both the
optimal and non-optimal inputs. The percent error in the final estimate of µmax is
0.006% for the optimal input and 0.03% for the non-optimal input in Table 1. The
percent error in the final estimate of K is 0.101% for the optimal input and 0.118% for
the non-optimal input in Table 2. And the two tables show the average estimates and
standard deviations for both the optimal and non-optimal inputs. While the average
estimate of the optimal input is greater than that of the non-optimal input, the standard
deviation of the optimal input is smaller than that of the non-optimal input in Table 1.
The average estimates and the standard deviations are the same in Table 2. The results
clearly show the advantages of utilizing the optimal input.
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Table 2 Estimates of the Parameter K for a typical run

Cycle number Estimate of K

Optimal input Non-optimal input

0 0.5 0.5

1 0.99571 0.99617

2 0.99899 0.99882

3 0.99899 0.99882

Percent error (cycle 3) 0.101% 0.118%

Average estimate (5 runs) 0.8985 0.8985

Standard deviation (5 runs) 0.2228 0.2228

µmax = 0.005, x(0) = 2mg/L, X = 1000mg/L, T = 200 min, b = 4mg/(L min). The optimal input:
u(t) = b and the non-optimal input: u(t) = b sin ωt (ω = 0.01 rad/ min). The first approximation of the
parameter K is assumed to be K = 0.5. 1000 additional observations are made at 0.2 min intervals. (True
value of K = 1)

4.2 Case of time-varying cell concentration

In the previous section we supposed that the biomass is constant. In this part, we will
consider the biomass X changing with the variation of the substrate concentration.
The substrate x and the biomass X satisfy the following equation set:

{
ẋ(t) = −µmax

x(t)
K+x(t) X (t) + u(t),

Ẋ(t) = Yµmax
x(t)

K+x(t) X (t).
(58)

By the expression of X , we have X (t) > 0, t ∈ [0, T ]. The corresponding param-
eters K and µmax satisfy the sensitivity Eqs. 13 and 14.

Let

α(t) =
t∫

0

(x(s) − K y(s))

(K + x(s))2 ds, (59)

β(t) =
t∫

0

x(s)(K + x(s)) + Kµmaxz(s)

(K + x(s))2 ds. (60)

then y, z satisfy the following differential equations:

ẏ(t) = µmaxα̇(t)X (t) + µmaxα(t)Ẋ(t), (61)

ż(t) = −β̇(t)X (t) − β(t)Ẋ(t). (62)

Then

y(t) = µmaxα(t)X (t), (63)
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z(t) = −β(t)X (t). (64)

and substitute them into the expressions of α, β, we can obtain:

α(t) =
t∫

0

x(s)

(K + x(s))2 exp

⎛
⎝−

t∫
s

µmax K X (p)

(K + x(p))2 dp

⎞
⎠ ds (65)

β(t) =
t∫

0

x(s)

K + x(s)
exp

⎛
⎝−

t∫
s

µmax K X (p)

(K + x(p))2 dp

⎞
⎠ ds (66)

The system becomes:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = −µmax
x(t)

K+x(t) X (t) + u(t),

Ẋ(t) = Yµmax
x(t)

K+x(t) X (t),

α̇(t) = x(t)−Kµmaxα(t)X (t)
(K+x(t))2 ,

β̇(t) = x(t)(K+x(t))−Kµmaxβ(t)X (t)
(K+x(t))2 .

(67)

The corresponding cost functional is :

J =
T∫

0

[pµ2
maxα

2(t) + qβ2(t)]X2(t)dt. (68)

The corresponding Hamiltonian and Lagrangian are:

H(t, x, X, α, β, u, λ1, λ2, λ3, λ4) = λ1

(
−µmax

x

K + x
X + u

)

+λ2Yµmax
x

K + x
X + λ3

(x − KµmaxαX)

(K + x)2

+λ4
[x(K + x) − Kµmaxβ X ]

(K + x)2

+(pµ2
maxα

2 + qβ2)X2, (69)

L(t,X , u, λ, µ, ν) = H(t, x, X, α, β, u, λ1, λ2, λ3, λ4)

+µ1(u − a) + µ2(b − u) + νx . (70)

where

ν =
{≥ 0, x∗ = 0

0, x∗ > 0
, µ1, µ2 ≥ 0, µ1(u

∗ − a) = µ2(b − u∗) = 0.
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λ̇1(t) = −L∗
x [t] = λ1µmax

K X∗

(K + x∗)2 − λ2Yµmax
K X∗

(K + x∗)2

−λ3
(K − x∗ + 2Kµmaxα

∗ X∗)
(K + x∗)3

−λ4
[K (K + x∗) + 2Kµmaxβ

∗ X∗]
(K + x∗)3 − ν, (71)

λ̇2(t) = −L∗
X [t] = −2(pµ2

maxα
∗2 + qβ∗2

)X∗ + λ1µmax
x∗

K + x∗

−λ2Yµmax
x∗

K + x∗ + λ3
Kµmaxα

∗

(K + x∗)2 + λ4
Kµmaxβ

∗

(K + x∗)2 , (72)

λ̇3(t) = −L∗
α[t] = −2pµ2

maxα
∗ X∗2 + λ3

Kµmax X∗

(K + x∗)2 , (73)

λ̇4(t) = −L∗
β [t] = −2qβ∗ X∗2 + λ4

Kµmax X∗

(K + x∗)2 , (74)

L∗
u[t] = H∗

u [t] + µg∗
u [t] = λ1 + µ1 − µ2 = 0. (75)

Since the system, the cost functional, g and h do not explicitly depend on t , then
H∗ is constant, that is,

H∗ = const, t ∈ [0, T ]. (76)

We can obtain

u∗(t) =
⎧⎨
⎩

b, if λ1 > 0
undetermined, if λ1 = 0
a, if λ1 < 0

(77)

By 77, the solution of u∗(t) lies on the determination of the λ1 sign.

Theorem 3 If the cell population X is changing with time, then the optimal pair
{x∗(·), u∗(·)} of the problem defined by Eq. 67 is such that x∗(t) > 0, a.e. t ∈ [0, T ].

Proof Case 1 x∗(t) = 0, a.e. t ∈ [0, T ]
We have α∗(t) = β∗(t) = 0, u∗(t) = 0, a.e. t ∈ [0, T ]. Under the Maximum Prin-

ciple condition, it holds µ1(t) = µ2(t) = 0, by 75, we get λ1(t) = 0, a.e. t ∈ [0, T ]
and the corresponding Hamiltonian H∗ is 0.

However x∗(0) > 0, and then the control u∗ is an impulse control at the initial time
point which is a generalized solution, not a classical solution that we desire. Thus the
case does not meet the requirement.

Case 2 x∗(t) > 0, a.e. t ∈ [0, T ]
Then, ν(t) = 0, α∗(t) > 0, β∗(t) > 0 a.e. t ∈ [0, T ]. Under the terminal condi-

tions, it is concluded that λ1(T −) = λ2(T −) = λ3(T −) = λ4(T −) = 0.
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Using Eqs. 73 and 74, we can conclude

λ3(t) = 2pµ2
max

T∫
t

α∗(s)X∗2
(s) exp

⎛
⎝

t∫
s

Kµmax X∗(p)

(K + x∗(p))2 dp

⎞
⎠ ds, (78)

λ4(t) = 2q

T∫
t

β∗(s)X∗2
(s) exp

⎛
⎝

t∫
s

Kµmax X∗(p)

(K + x∗(p))2 dp

⎞
⎠ ds, (79)

Further, λ3(t) > 0, λ4(t) > 0 a.e. t ∈ [0, T ].
Under the terminal conditions, using Eqs. 71,72, we can conclude

λ1(t) =
T∫

t

exp

⎛
⎝

t∫
s

Kµmax X∗(p)

(K + x∗(p))2 dp

⎞
⎠

{
λ2(s)

Yµmax K X∗(s)
(K + x∗(s))2

+λ3(s)
[K − x∗(s) + 2Kµmaxα

∗(s)X∗(s)]
(K + x∗(s))3 (80)

+ λ4(s)
[K (K + x∗(s)) + 2Kµmaxβ

∗(s)X∗(s)]
(K + x∗(s))3

}
ds,

λ2(t) =
T∫

t

exp

⎛
⎝−

t∫
s

Yµmaxx∗(p)

K + x∗(p)
dp

⎞
⎠ {

2[pµ2
maxα

∗2
(s) + qβ∗2

(s)]X∗(s)

−λ1(s)µmax
x∗(s)

K + x∗(s)
− λ3(s)

Kµmaxα
∗(s)

(K + x∗(s))2 − λ4(s)
Kµmaxβ

∗(s)
(K + x∗(s))2

}
ds.

(81)

Case 3 x∗(t) ≥ 0, t ∈ [0, T ]
Let t1 > 0, t1 < t2 ≤ T , suppose that there exists at least one interval [t1, t2] ⊂

[0, T ], such that x∗(t) = 0, a.e. t ∈ [t1, t2]. By case 1, Hamiltonian is 0. Thus, we get

[pµ2
maxα

∗2
(T −) + qβ∗2

(T −)]X∗2 + λ1(T
−)

(
−µmax

x∗

K + x∗ X∗ + u∗
)

+λ2(T
−)Yµmax

x∗

K + x∗ X∗ + λ3(T
−)

(x∗ − Kµmaxα
∗ X∗)

(K + x∗)2

+λ4(T
−)

[x∗(K + x∗) − Kµmaxβ
∗ X∗]

(K + x∗)2 = [pµ2
maxα

∗2
(T −) + qβ∗2

(T −)]X∗2 = 0,

It is inferred that α∗(T −) = β∗(T −) = 0 which is in contradiction with α∗(T −) >

0, β∗(T −) > 0. Then case 3 is impossible. ��
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4.2.1 Law of the singular control

If there exists a singular control, then there exists a closed interval I ⊂ [0, T ], such
that λ1(t) = 0, a.e. t ∈ I , that is, Hu = 0, in that case dλ1(t)

dt = 0, namely d Hu
dt = 0

and using Eq. 71 it can be derived as

0 = λ2Yµmax K X∗(K + x∗) + λ3(K − x∗ + 2Kµmaxα
∗ X∗)

+λ4[K (K + x∗) + 2Kµmaxβ
∗ X∗]. (82)

Furthermore, the existence of the singular control has to satisfy a necessary condi-
tion:

∂

∂u

[
d2 Hu

dt2

]
≥ 0, namely,

∂

∂u

[
d2λ1(t)

dt2

]
≥ 0 (83)

This condition of the optimal control problem is usually called generalized Legen-
dre-Clebsch condition.

Let

�(t) = 2X∗2
(t)(K + x∗(t))

{
Yµmax K

[
pµ2

maxα
∗2

(t) + qβ∗2
(t)

]
(K + x∗(t))

+pµ2
maxα

∗(t)
[
K − x∗(t) + 2Kµmaxα

∗(t)X∗(t)
] + qβ∗(t)[K 2 + K x∗(t)

+ 2Kµmaxβ
∗(t)X∗(t)]

}
,

(t) = µmaxx∗(t)X∗(t)
[
λ3(t)(1 + 2KµmaxYα∗(t)) + Kλ4(t)(4 + 2µmaxYβ∗(t))

]
+Yµ2

max K 2 X∗(t)[λ3(t)α
∗(t) + λ4(t)β

∗(t)] + µmax X∗(t)
K + x∗(t)

[
λ3(t)

(
2K x∗(t)

+ K 2 − x∗2
(t) + 2Kµmaxα

∗(t)X∗(t)x∗(t)
)

− Kλ4(t)
(

K x∗(t) + 2x∗2
(t)

− K 2 − 2µmaxβ
∗(t)X∗(t)x∗(t)

)]
,

then the singular control becomes:

u∗(t) = (t) − �(t)

2K [λ3(t)(1 + µmaxα∗(t)X∗(t)) + λ4(t)µmaxβ∗(t)X∗(t)] . (84)

4.2.2 Numerical simulations

Because the differential equations of λ1(t) and λ2(t) are coupled, we are unable to
determine the sign of the switch function λ1(t) analytically. So we fix all the sys-
tem parameters except respectively µmax (Fig. 2) and K (Fig. 3) to perform the
numerical simulations. The experiments with different values of µmax and K are
done setting u(t) = b. As a result, λ1(t) > 0, and then all of the optimal controls
are u∗(t) = b.
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Fig. 2 The switch function λ1 varying with p and q for various µmax. K = 1mg/L, Y = 0.08, x(0) = 2mg/L,
X(0)=1000mg/L. a =−4mg/(L min), b = 10mg/(L min). T=200 min, �t = 0.2 min. (I) µmax = 0.0005min−1;
(II) µmax = 0.01min−1

In Figs. 2 and 3 we show several plots, obtained varying the values of p and q.
We can observe how the values of p and q affect the function λ1(t). The figures show
that the smaller the value of p is and the larger the value of q is, the larger the value
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Fig. 3 The switch function λ1 varying with p and q for various K . µmax = 0.01min−1,
Y = 0.08, x(0) = 2mg/L, X(0) = 1000mg/L. a =−4mg/(L min), b = 10mg/(L min). T = 200 min, �t = 0.2 min.
(I) K = 0.1mg/L; (II) K = 10mg/L

of λ1(t) at each time point is. In addition, given all the parameters, the curves of the
functions λ1(t) maintain similar shapes for different values of p and q.
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Moreover, we can rewrite the equations of system 58 as follows:

X (t) = X (0) exp

⎛
⎝

t∫
0

Yµmax
x(s)

K + x(s)
ds

⎞
⎠

and

x(t) = x(0) −
t∫

0

µmax X (s)
x(s)

K + x(s)
ds +

t∫
0

u(s)ds

It is inferred that X (0) ≤ X (t) ≤ X (0)eYµmaxt . If the value of µmax is sufficiently
small, the concentration of biomass varies small with time. Thus we can consider
X (t) as a constant X (0) and we can classify such a case into Sect. 4.1. In addition,
the second term on the right hand side in the substrate equation can not be neglected
compared to the effect of the substrate. Because the order of magnitude of X (t) is so
large enough that µmax X (t) and x(t) are of the same order of magnitude, thereby the
second term is not close to zero.

If the value of µmax is large, X (t) can not be considered a constant and we have to
classify such a case into Sect. 4.2.

5 Conclusions

In this paper we show that the model of the growth of a single microbial species on a
single substrate, here presented, is structurally identifiable, before developing a good
input for parameter estimation. Then we investigate the design of optimal sensitivity
input for the model. Moreover, we discuss two cases, where respectively the biomass
X is a constant and is a variable. Whether the biomass in the model is constant or not
depends on the value of the maximum specific growth rate µmax. If the value of µmax
is sufficiently small, the biomass can be regarded as a constant. Otherwise, X must be
considered a variable; this fact increases the complexity of the problem, set in terms
of an optimal control problem with state constraints.

In the paper the control problem is essentially the solution of the optimal control
with state constraints. The corresponding optimal control consists of a bang–bang
control and a singular control which depends on the sign of the costate λ1. If the
biomass in the model is a variable, then the costates of the corresponding optimal
control problem are coupled and it is impossible to analytically determine the sign of
λ1. In addition, we perform some numerical simulation experiments. In Sect. 4.1.1,
in order to demonstrate the advantages of utilizing the optimal input, the parameter
estimation accuracy is compared with and without the optimal input in presence of
observation noise. In Sect. 4.2.2, given the value of control, we analyze the sign of λ1
and consequently establish whether the control is optimal or not. Our main goal is to
find the optimal control by means of numerical simulations. However, up to now an
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efficient algorithm for the search of the optimal control with state constraints has not
yet been proposed and we should focus on the study of this algorithm in the future.
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